Study of internal stresses in a TWIP steel analyzing transient and permanent softening during reverse shear tests
نویسندگان
چکیده
Recent Bauschinger-type tests conducted on a twinning-induced plasticity (TWIP) steel highlights the important contribution of internal stresses to work hardening [1]. Along this line we present Bauschinger experiments in a Fe-22Mn wt.%-0.6C wt.% TWIP steel. The mechanical behaviour upon load reversal shows transient and permanent softening effects. Determination of the internal stress from the magnitude of the permanent softening yields a contribution to work hardening of the order of 20%. Analysis of the transient softening, during strain reversal, indicates that internal stress are consistent with reported data on high carbon spheroidized steels.
منابع مشابه
Stress–strain response and microstructural evolution of a FeMnCAl TWIP steel during tension–compression tests
The stress–strain response of a Fe–17.5Mn–0.7C–2Al TWIP steel during cyclic loading has been investigated by means of tension–compression tests within the strain limits of 72%, 75% and 710%. In addition, the microstructural evolution during the 75% cyclic test has also been studied. The difference between the forward and reverse stress for each pre-strain has been analyzed at 0.2% offset strain...
متن کاملMechanical behaviour of TWIP steel under shear loading
Twinning induced plasticity steels (TWIP) are very good candidate for automotive industry applications because they potentially offer large energy absorption before failure due to their exceptional strain hardening capability and high strength. However, their behaviour is drastically influenced by the loading conditions. In this work, the mechanical behaviour of a TWIP steel sheet sample was in...
متن کاملDetailed Microstructural Evolutions of TWIP Steel During Tensile Straining: In situ SEM Observations
Microstructural evolutions of twinning induced plasticity (TWIP) steel during tensile straining were investigated by in situ SEM observations. The results indicated that slip lines and mechanical twins as well as surface relief were increased with increasing strain, resulting in a stepped surface. Additionally, these deformation mechanisms could change the shape of each grain via shear and rota...
متن کاملInfluence of High Strain Rates on the Mechanical Behavior of High-Manganese Steels
In this work, dynamic mechanical properties of three high-manganese steels with TRIP/TWIP or fully TWIP characteristics are studied. High strain rate experiments in the range of true strain rates between ~500 and 1800 /s are conducted using a dynamic torsional testing setup. All the three steels show a positive strain rate sensitivity in the intermediate range of strain rates (up to 500 /s). Bu...
متن کاملStacking Fault Energy and Microstructural Insight into the Dynamic Deformation of High-Manganese TRIP and TWIP Steels
The dynamic behavior of three high manganese steels with very different stacking faultenergy (SFE) values (4-30 mJ/m2) were studied using high strain rate torsional tests. The hotrolledmicrostructure of the steel with the lowest SFE of 4 mJ/m2 consisted of a duplex mixture ofaustenite and ε-martensite, but those of the other two steels were fully austenitic. The deformedmicrostructures were stu...
متن کامل